
Deep Static Modeling of
invokedynamic

George Fourtounis
Yannis Smaragdakis

University of Athens

ECOOP 2019

Modeling of Invokedynamic--Fourtounis, Smaragdakis
2

The invokedynamic Framework

● JVM-friendly programmable dynamic (re)linking
● Ultra-powerful, crucial to analyze. Its core method handles API:

– “poses a risk to the secure implementation of the Java platform.”
(Holzinger et al. 2016)

– “seems to provide less security by design than the Core Reflection
API.” (Security Explorations 2011)

● Too dynamic for static analysis to tackle!
● Features using invokedynamic cause unsoundness in call-

graph construction in current analysis tools (Reif et al. 2018)
● “there is a significant difference between supporting
invokedynamic as a general feature, and invokedynamic as it is
used by the Java 8 compiler for lambdas” (Sui et al. 2018)

Modeling of Invokedynamic--Fourtounis, Smaragdakis
3

invokedynamic Use Is Growing!

● Lambdas and method references are a pervasive
feature of Java 8+ code
– “... an increasing trend in the adoption rate of lambdas.”

(Mazinanian et al. 2017)

● String concatenation in Java 9+ code
● Libraries and language runtimes using
invokedynamic for its expressive power

● Dynamic JVM languages (e.g., Groovy)
● INVOKEDYNAMIC intrinsic proposal for Java

source code (JEP 303)

Modeling of Invokedynamic--Fourtounis, Smaragdakis
4

Technology Background

● One instruction: invokedynamic (Java 7)
● Delegates linking of call sites to user-defined

“boostrap” code
– Reifies call sites as Java objects

– Call sites contain method handles

● Method handles + method types = type-safe
method pointers

● The method handles API contains a dynamic
code generator (“lambda forms”)

Modeling of Invokedynamic--Fourtounis, Smaragdakis
5

Example: Late Linking
class C {

 A obj = new A();

 void run() {

 A.print(obj);

 }

}

class A {

 static void print(A a) { }

}

(new C()).run();

Modeling of Invokedynamic--Fourtounis, Smaragdakis
6

Example: Late Linking
class C {

 A obj = new A();

 void run() {

 A.print(obj);

 }

}

class A {

 static void print(A a) { }

}

(new C()).run();

class C {
 A obj = new A();
 void run() {
 INVOKEDYNAMIC "print" "(A)V" [obj]
 <A : CallSite bootstrap(MethodHandles.Lookup,
 String, MethodType)>
 []
 }
}
class A {
 static void print (A a) { }
 static CallSite bootstrap(..., String name,
 ...) {
 MethodType mt = ...
 MethodHandles.Lookup lookup = ...
 MethodHandle handle =
 lookup.find(A.class, name, mt);
 return new ConstantCallSite(handle);
 }
}
(new C()).run();

method handle

bootstrap code

reified call site

method type

Modeling of Invokedynamic--Fourtounis, Smaragdakis
7

Java 8 Functional Features

● Lambdas and method references
– Support functional programming idioms such as

streaming pipelines

– Java generalization: every single-abstract-method
type (“SAM type”) becomes a lambda,
automatically!

● Lambdas and method references are
implemented with invokedynamic

Modeling of Invokedynamic--Fourtounis, Smaragdakis
8

Our Solution

● Model the full invokedynamic framework (including method
handles, method types, and related APIs)
– Work alongside a points-to analysis to integrate handling of the

reified call site objects

– Simulate behavior of dynamically-generated/native code

● Give a fast variant of our model for the common case of
lambdas and method references

● Declarative model (Doop analysis framework)
– Rules written in Datalog

– Automatic mutual recursion between a robust points-to analysis,
call-graph construction, exception analysis, reflection
analysis, ...

Modeling of Invokedynamic--Fourtounis, Smaragdakis
9

Main Design Elements (Overview)

● Lots of mock objects (with the key features our
analysis infers, and nothing more!)
– for method handles, lookup objects, varargs, boxed

allocations, ...

● Mutual recursion of invokedynamic analysis with
points-to analysis, reflection analysis
– much in the spirit of Doop/declarative analysis

● Connection of API elements based on how mock
objects are used
– “a handle that looks like this method reached this

invokedynamic instruction, hence...”

Modeling of Invokedynamic--Fourtounis, Smaragdakis
10

Method Handles API: Invocation

● Call-graph edges, parameter values, return values
● Method handles and method types: better together
● Core technique: mock analysis objects

– Invocation may convert arguments: analysis mocks
boxed allocations

– Constructor method handles are special, they allocate
objects

Modeling of Invokedynamic--Fourtounis, Smaragdakis
11

Method Handles API: Look-up

● Method handle lookup API
● Caller sensitivity: we tag mock values to

propagate caller information in the program
● Interplay with classic reflection

– Understand Class objects

– Conversions from reflective values

Modeling of Invokedynamic--Fourtounis, Smaragdakis
12

Generic invokedynamic

● invokedynamic calls the bootstrap code to
create call sites
– “Boot” call-graph edges: maintain a separate call

graph for bootstrap calls

– Model argument shifting: special handling of
bootstrap invocations

– Model methods accepting varargs: mock values to
the rescue again

● Call sites contain method handles
– Again, special handling for constructors

Modeling of Invokedynamic--Fourtounis, Smaragdakis
13

Resolving invokedynamic

bootstrapped invokedynamic
=

invoke the method handle of the
returned call site

Modeling of Invokedynamic--Fourtounis, Smaragdakis
14

Call Sites Need Precision

● Our static analysis mutually recurses with
orthogonal points-to analysis
– to reason about the contents of call sites (and thus

target methods)

● But a bootstrap method may be used in many call
sites!

● To avoid polluting all sites with all handles, we
filter call site targets according to method
signature

Modeling of Invokedynamic--Fourtounis, Smaragdakis
15

Special, Fast-Path Modeling of Lambdas
and Method References

● Java lambdas use invokedynamic
– For implementation independence

● alternative: static transformation (Retrolambda)

● Others: ad hoc, partial modeling of lambdas
● Very common features

– Modeling must not depend on (slow) reflection analysis

– Reuse non-reflective part of previous rules

● Phases:
– Linkage: create lambda factory via metafactory

– Capture: capture values from environment at lambda creation

– Invocation: invocation of lambda (possibly elsewhere)

● Main technique: mock objects (carrying metadata) that
propagate in the program

Modeling of Invokedynamic--Fourtounis, Smaragdakis
16

Evaluation I

● Test suite 1 (our own): extensive coverage of
features of method handles, lambdas, method
references, invokedynamic

● Freely available, bundled with Doop
● Reflection expensive for full invokedynamic

Modeling of Invokedynamic--Fourtounis, Smaragdakis
17

Evaluation II

● Test suite 2 (Sui et al. 2018): tuned for dynamic
language features, provides ground truth

● Dynamo is the generic invokedynamic benchmark
● Loss of one target scenario due to absence of flow

sensitivity in Doop

Modeling of Invokedynamic--Fourtounis, Smaragdakis
18

Conclusion

● We can analyze code containing invokedynamic!
● Our technique:

– models API behavior

– uses mock analysis objects

– connects metadata across the program

● Full case aided by reflection analysis
● Common cases (lambdas/method references)

supported by custom mode

Modeling of Invokedynamic--Fourtounis, Smaragdakis
19

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

