
Formally Specifying and Analyzing a Parallel Virtual
Machine for Lazy Functional Languages Using Maude

Georgios Fourtounis
School of Electrical and Computer Eng.
National Technical University of Athens

gfour@softlab.ntua.gr

Peter Csaba Ölveczky
Department of Informatics

University of Oslo
peterol@ifi.uio.no

Nikolaos Papaspyrou
School of Electrical and Computer Eng.
National Technical University of Athens

nickie@softlab.ntua.gr

Abstract
Pure lazy functional languages are a promising programming
paradigm for harvesting massive parallelism, as their abstraction
features and lack of side effects support the development of modu-
lar programs without unneeded serialization. We give a new formal
message passing semantics for implicitly parallel execution of a
lazy functional programming language, based on the intensional
transformation that converts programs in functional style to a form
that can be executed in a dataflow paradigm. We use rewriting logic
to define the semantics of our parallel virtual machine and we use
the Maude tool to formally analyze our model. We also briefly dis-
cuss a prototype parallel implementation of our model in Erlang.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods; Model checking; D.3.2 [Program-
ming Languages]: Language Classifications—Applicative (func-
tional) languages; Data-flow languages; F.1.2 [Computation by
Abstract Devices]: Modes of Computation—Parallelism and con-
currency

General Terms Declarative parallel programming languages: se-
mantics and implementation

Keywords Dataflow, formal analysis, intensional transforma-
tion, lazy functional programming languages, Maude, parallelism,
rewriting logic.

1. Introduction
Pure lazy functional languages have been proposed as a way to
harvest the underlying parallelism of programs: their mathematical
compositional semantics and lack of side effects suggest an ele-
gant way of distributing computations with little effort from the
programmer, while laziness avoids unneeded computations. Paral-
lelism in lazy languages has therefore been an active topic of re-
search (see, e.g., [11, 17, 18, 23, 29, 31]), usually in connection
with the two established methods for implementing lazy languages:
graph reduction and graph rewriting.

Parallel lazy evaluation is, however, not without its problems:
laziness complicates reasoning about programs and their control
flow, while the bookkeeping needed to avoid recomputations may

[Copyright notice will appear here once ’preprint’ option is removed.]

affect performance. These problems have been addressed by many
successful systems, including Eden [17], GpH [30], and Data Par-
allel Haskell [15], which all depend on the programmer to provide
clues about what can be parallelized (explicit parallelism). Auto-
matically inferring parallelism from the user’s program (implicit
parallelism) is an active field of research [13], but seems to be a
more difficult target, as parallel lazy evaluation has a cost model
that is difficult to analyze automatically.

To capture the behavior of parallel lazy evaluation, different se-
mantics have been given for the parallel execution of lazy func-
tional languages [3, 4, 9, 14], focusing on different ways of declar-
ing parallelism (explicit vs. implicit), and using different models
for distributing computations. Continuing this line of research, we
give a new formal semantics for implicitly parallel execution of
lazy functional programming languages, based on message pass-
ing for distributing computation without shared memory. In this
paradigm, we can express lazy evaluation of expressions in terms
of messages exchanged between evaluating expressions and sus-
pended computations (thunks), treating both as processes.

Our semantics is not only of theoretical interest; it should be
suitable as a basis for parallel implementation since it is based on
the intensional transformation [26, 27], a technique for implement-
ing higher-order lazy functional languages as dataflow, whose ex-
ecution model (eduction) has proved to be efficient in sequential
architectures [5]. The figure below summarizes our methodology.

Our semantics is formally defined in rewriting logic [19], using
the Maude prototyping and verification platform [6], which sup-
ports the executable definition of distributed computations and pro-
vides model checking tools with which we analyze the behaviors of
the model. Furthermore, the message passing style of the semantics
made it very easy to move from the Maude model to a prototype
parallel implementation in Erlang [1].

Section 2 introduces our source functional language, the inten-
sional transformation that transforms such programs into dataflow
programs, and rewriting logic and the Maude tool. Section 3 infor-
mally describes our parallel virtual machine, which is formalized
in rewriting logic in Section 4. We formally analyze our model in
Section 5 and discuss in Section 6 how we defined a parallel pro-
totype implementation in Erlang from this model. We also discuss
related work in Section 7 and give some final remarks in Section 8.

1 2011/6/13

2. Preliminaries
This section briefly discusses the source lazy functional program-
ming language FOFL; the intermediate language NVIL, which is
the language for which we actually provide a parallel execution
model, and the transformation from FOFL to NVIL; and the Maude
formalism and tool that is used to formally define and analyze our
parallel execution environment.

2.1 The Language FOFL
The source language FOFL is a first-order lazy functional program-
ming language [26], whose syntax is given below:

Program := Def0 , . . . ,Defn
Def := f(v0, . . . , vn−1) = Expr
Expr := v | n | f (Expr0, . . . ,Exprn−1)

| Op (Expr0, . . . ,Exprm)
Op := + | − | ∗ | / | ≤ | == | if | . . .
where v, vi are variable names, n ≥ 0, and m > 0.

FOFL is the first-order subset of the higher-order FL language
in the work of Rondogiannis [27], but is equally expressive, since
all FL programs can be translated to FOFL using the technique of
defunctionalization [25]. Therefore, we only treat first-order pro-
grams, assuming that higher-order ones have been defunctionalized
to first-order ones. Using FOFL, we can then accept all first-order
as well as all higher-order lazy functional programs without partial
applications (see [27] for details about these restrictions). Com-
pared to the higher-order, multidimensional model defined by Ron-
dogiannis, we prefer this combination of a first-order language and
defunctionalization, as it simplifies our parallel model without los-
ing expressiveness.

The Fibonacci function can be written in FOFL as follows:
result = fib(3)
fib(x) = if (x < 2) then 1

else fib(x - 1) + fib(x - 2)

By convention, the final result of the program is always con-
tained in a variable named result. We use infix notation for
operators, whenever appropriate, and the more intuitive syntax
if e then e1 else e2 for conditional expressions.

2.2 The Language NVIL and the Intensional Transformation
NVIL [26] is the language of the programs resulting from the trans-
formation and the one whose parallel execution we model. Pro-
grams in NVIL are made of nullary variable definitions; i.e., there
are no functions, while expressions of the language are accompa-
nied during execution by a context, represented as a stack.

The syntax of NVIL is defined as follows:

Program := Def0 , . . . ,Defn
Def := v = Expr
Expr := v | n | Op (Expr0, . . . ,Exprm)

| calln(Expr) | actuals(Expr0, . . . ,Exprn)
Op := + | − | ∗ | / | ≤ | == | if | . . .
where v is a variable name and n ≥ 0.

A program consists of a list of definitions, each defining an
expression as the body of a unique variable v. An expression can
be a variable, a number, a call/actuals expression, or an application
of a built-in operator. We provide the convenient notation false and
true for the truth values 0 and 1.

The execution uses a stack as the context: callj(e) pushes the
value j to the context stack and continues to evaluate e in the new
context; its inverse, actuals(e0, . . . , en), pops the head i of the
context and evaluates ei in the new context.

eval :: (Expr ,Context ,Prog)→ Value
eval(n, ctxt , p) = n
eval(calli(e), ctxt , p) = eval(e, i : ctxt , p)
eval(actuals(e0, . . . , en), j : ctxt , p) = eval(ej , ctxt , p)
eval(v, ctxt , p) = eval(lookup(v, p), ctxt , p)
eval(e1 + e2, ctxt , p) = eval(e1, ctxt , p) + eval(e2, ctxt , p)

(similar rules for other built-in operators)
eval(if e0 then e1 else e2, ctxt , p) = eval(e1, ctxt , p)

if eval(e0, ctxt , p) = 1
eval(if e0 then e1 else e2, ctxt , p) = eval(e2, ctxt , p)

if eval(e0, ctxt , p) = 0

where 0 ≤ i and 0 ≤ j ≤ n.

lookup :: (Var ,Prog)→ Expr
lookup(v, (. . . , (v = e), . . .)) = e

Figure 1. An interpreter for NVIL.

An interpreter for NVIL is shown in Figure 1, following the
established demand-driven model of intensional languages, educ-
tion. It is defined as a function eval , which takes an expression, a
context, and a program, and produces a value, which is the result
of executing the program. Since the NVIL program is immutable
during execution and is only used for variable definition lookup,
the parameters of evaluation that change during runtime are the ex-
pression and the context — a pair for which we use the notation
〈expr , context〉.

We use the metavariable n to represent numbers, and v to rep-
resent variable names. The function lookup returns the definition
body of a variable. We write x : s for the stack obtained by push-
ing element x to the stack s.

The intensional transformation converts programs written in
the lazy first-order functional language FOFL to the zero-order
dataflow language NVIL. The transformation itself and its associ-
ated execution model (eduction) are described in Rondogiannis’
work [26]. We introduce here the basic ideas of the transforma-
tion by means of an example. Our work, however, does not focus
on the transformation itself, but on a parallel model of execution
for its target language.

An example of the transformation is shown below:

result = f(2)
f(x) = if (x ≤ 1) then 1 else x * f(x-1)

⇓
result = call0(f)
f = if (x ≤ 1) then 1 else x ∗ call1(f)
x = actuals(2, x− 1)

The transformation essentially lowers all functions of a program
to variable definitions and uses stacks to pass their arguments
around, with the call and actuals operators being the “push” and
“pop” operations.

We give a step by step description of how the NVIL code of this
example runs (we use the notation [] to denote the empty context):

1. Initially the value of result is demanded:
eval(result , [])→ eval(call0(f), [])→ eval(f, [0])

→ eval(if (x ≤ 1) then 1 else x ∗ call1(f), [0])
2. At this point, the if expression must check its (x ≤ 1) subex-

pression, so it evaluates it separately in the current context:
eval(x ≤ 1, [0])

3. The last expression is a constant operator that has two subex-
pressions: x and 1. They are evaluated as new tasks as follows:

2 2011/6/13

• eval(x, [0])→ eval(actuals0(2, x− 1), [0])

→ eval(2, [])→ 2

• eval(1, [0])→ 1, a value

4. The x ≤ 1 expression consumes the two values computed
above to become 2 ≤ 1, which equals false .

5. The if expression uses the evaluated condition and becomes:
eval(if false then 1 else x ∗ call1(f), [0])
which evaluates to the branch x ∗ call1(f).

6. As before, this expression is a constant operator that creates two
new subexpressions:
• eval(x, [0])→ . . .→ 2 (as before)
• eval(call1(f), [0])→ eval(f, [1 0])→

eval(if (x ≤ 1) then 1 else x ∗ call1(f), [1 0])

7. Now x can be shown to be 1 in the new context and the branch
containing 1 is returned. This results in the former multiplica-
tion giving 2 ∗ 1 = 2, which is the result of the whole program.

2.3 Rewriting Logic and Maude
Rewriting logic [19] extends algebraic specifications to concurrent
systems, and has proved suitable for specifying distributed systems
in an object-oriented style.

In rewriting logic, the static parts of a system (functions, data
types, etc.) are defined as an algebraic equational specification; i.e.,
we declare sorts, subsorts, and function symbols, and equations
are used to define the functions. The transitions of a system are
specified by labeled rewrite rules of the form l : t −→ t′ if cond ,
where t and t′ are terms, l is a rule label, and cond is a (possibly
empty) conjunction of equalities. Such a rule specifies a local
transition from an instance of the term t to the corresponding
instance of the term t′, provided that the condition cond is satisfied.

Maude [6] is a language and high-performance tool for specify-
ing, simulating, and model checking rewriting logic theories. The
Maude syntax is fairly intuitive (see [6] for details). A function f
with arguments of sorts s1 . . . sn and value of sort s is declared by
op f : s1 . . . sn -> s. Equations are written eq t = t′, and ceq t = t′

if cond for conditional equations. Unconditional and conditional
rewrite rules are written, respectively, rl [l] : t => t′ and crl
[l] : t => t′ if cond . Variables are declared with the keywords
var and vars.

A class declaration class C | att1 : s1, . . . , attn : sn
declares a class C with attributes att1 to attn of sorts s1 to sn.
An object of class C in a given state is represented as a term
< O : C | att1 : val1, ..., attn : valn > of sort Object, where
O, of sort Oid, is the object’s identifier, and val1 to valn are the
current values of the attributes att1 to attn. In a concurrent object-
oriented system, a state is a term of sort Configuration. It has
the structure of a multiset of objects and messages. Multiset union
for configurations is denoted by an associaive and commutative
juxtaposition operator (empty syntax), so that rewriting is multiset
rewriting supported in Maude. The dynamic behavior of concurrent
object systems is axiomatized by specifying each of its transition
patterns by a rewrite rule. For example, the rule

rl [l] :
m(O,w)
< O : C | a1 : x, a2 : O’, a3 : z >

=>
< O : C | a1 : x + w, a2 : O’, a3 : z >
m’(O’) .

defines a parameterized family of transitions in which a message m,
with parameters O and w, is read and consumed by an object O of

class C. The transitions change the attribute a1 of the object O and
send a new message m’(O’). “Irrelevant” attributes (such as a3)
need not be mentioned in a rule.

A Maude specification is executable under reasonable condi-
tions, and the tool offers a variety of formal analysis methods. The
rewrite command (rew [n] t0 .) simulates one behavior of the
system up to n rewrite steps from initial state t0. The search com-
mand uses breadth-first search to search for states that match a pat-
tern and satisfy a given condition and that can be reached from the
initial state. For example, the search command that searches for all
states reachable from t0 that cannot be further rewritten and that
match pattern is written (search t0 =>! pattern .). When the
state space reachable from the initial state is finite, Maude’s linear
temporal logic model checker [6] can check whether each behavior
from the initial state satisfies a linear temporal logic formula.

3. Parallelizing Eduction
The semantics of NVIL is a good basis for executing NVIL pro-
grams but does not take advantage of distribution in the case of par-
allel architectures and does not memoize computed values to avoid
recomputation. Therefore, we have designed a parallel Eduction
Virtual Machine (EVM) to execute intensional NVIL programs.

In this section we describe the parallelism potential of NVIL
programs, a distributed mechanism that guides eduction and avoids
recomputation (the warehouse), and our use of message passing.

3.1 NVIL Parallelism
Lazy evaluation in functional programming languages is inherently
sequential: the next symbol to reduce is always the head of the
current expression; function arguments are never evaluated on call
but later, on demand, during evaluation. On the other hand, strict-
ness gives room for parallel execution: if we have an operation that
contains many expressions that will all be needed, we can evaluate
them in parallel.

NVIL exposes strictness in a simple way: most built-in opera-
tors (such as + and −, but not if) are strict by definition. These
operators are therefore the source of parallelism in the language,
since their operands can be evaluated independently in parallel.

3.2 The Warehouse
A common problem of pure lazy functional languages is sharing:
the same code may be called multiple times but should only be
computed once.

For NVIL, this is illustrated by the program in the right-hand
side below, which is the result of transforming the FOFL program
in the left-hand side. The subexpression a is used twice:

result = double(a) result = call0(double)
double(x) = x + x double = x+ x
a = ... a = . . .

x = actuals(a)

Part of its execution is shown in the following figure:

〈result , []〉

〈call0(double), []〉

〈double, [0]〉

+

〈x, [0]〉 〈x, [0]〉

3 2011/6/13

Since the transformation exposes the flow of data in the program,
shared expressions are seen as the same variable in the same con-
text. In the example above, 〈x, [0]〉 appears twice during evaluation.

To solve the problem of repeated computations, eduction uses a
warehouse, which stores already computed values. NVIL programs
use the warehouse to demand values for 〈variable, context〉 pairs
and avoid recomputation.

In sequential implementations of intensional languages there
is one warehouse which records all computed values. This model
is not suitable for a parallel implementation: a single warehouse
would become a bottleneck, should many evaluating expressions
hit it concurrently. The solution is to use more than one warehouse
to distribute the demands. An evaluating expression may ask differ-
ent warehouses for different 〈variable, context〉 pairs. A demand
for a specific 〈variable, context〉 pair will always be sent to the
same warehouse; the warehouse choice is a function1 from the vari-
able and the context to a warehouse, therefore no computation can
appear in more than one warehouse. It may happen that different
nodes ask for the same expression. To avoid recomputation, only
one of them should then be allowed to be evaluated, while all the
others should wait for it.

The status of an expression node can change during its lifetime:
initially it is running, but it will be blocked by the warehouse when
demanding the value of some variable in a context. If the warehouse
has an already computed value, or if it waits for it from some
other node, it will eventually send the value to the asking node. If
the warehouse knows nothing about this value, the node continues
running, until it becomes a value, or it reaches another demand (and
communicates for that demand with the warehouse again).

3.3 The Message Passing Model
To express distributed evaluation, we represent expression nodes
and warehouses as processes that communicate through message
passing. Expression nodes may spawn new expression nodes and
wait for them to send a notification that they finished with a value;
they may also communicate with the warehouse, in order to get a
value for a 〈variable, context〉 pair.

The advantage of using message passing is that it unifies the
two different ways that eduction can be parallelized: the “fork-join”
parallelism that results from the NVIL evaluation tree, together
with the safe concurrent access to the distributed warehouse that
memoizes results.

4. Formalization in Rewriting Logic
In this section we explain how we have formalized our parallel
eduction model in Maude in an object-oriented style. Intensional
expressions (expression nodes) and warehouses (warehouse nodes)
are modeled as objects that communicate by message passing.

4.1 Representing NVIL Programs
NVIL expressions are encoded in Maude as follows: a program
variable v is represented by the Maude term $ "v"; a number n by
#n; a built-in operator Op applied to some arguments E1, E2, . . .
by cOp("Op", E1 : E2 : . . .), where Ei is the Maude rep-
resentation of Ei; and the intensional operators callj(E) and
actuals(E1, E2, . . .) by call(j, E) and actuals(E1 : E2 :
. . .). A list of NVIL expressions is represented by either the empty
list snil, or an expression E followed by another list L (E : L).

sorts Variable Expr ExprList .

subsort Variable < Expr < ExprList .

1 Our model can also be extended to express redundancy in call-by-name
evaluation, if warehouse choice is non-deterministic.

op enil : -> ExprList [ctor] .

op _:_ : Expr ExprList -> ExprList [ctor right id: enil] .

op $_ : String -> Variable [ctor] .

op #_ : Int -> Expr [ctor] .

op cOp : String ExprList -> Expr [ctor] .

op call : Nat Expr -> Expr [ctor] .

op actuals : ExprList -> Expr [ctor] .

Each variable definition v = E of the program is represented
by the term def("v",E):

sort Def .

op def : String Expr -> Def [ctor] .

The NVIL definition x = actuals(2, x − 1) is represented by
def("x", actuals(# 2 : cOp("-", $ "x" : # 1))).

A context is a stack, with snil the empty stack and :: the push
operation. We represent 〈expr , context〉 pairs as:

sort ExprContext .

op <_;_> : Expr Stack -> ExprContext [ctor] .

For example, 〈v , [1, 0]〉 is represented in Maude by the term
< $ "v" ; (1 :: 0) >.

4.2 Expression Nodes
For the set of operators that we have used, the tree formed during
execution has a maximum branch factor of 2 and we can name
nodes accordingly: in the case of an expression node EN that has
one sub-node, that child is given the name (EN \ left); in the
case of two sub-nodes, these are given the names (EN \ left)
and (EN \ right).

Using the Maude sort Oid, for object names, the tree nodes are
defined as instances of the following class Node:

sort NodeStatus .

ops running blocked : -> NodeStatus [ctor] .

class Node | status : NodeStatus, expr : ExprContext,

wp : Oids, whs : Oids,

prog : List{Def} .

The class Node describes expression nodes, which have the follow-
ing attributes: a scheduling status (running or blocked), the
expression currently being evaluated (expr), a list of known ware-
houses to send demands to (whs), a list of warehouses to update
after evaluation (wp) and the read-only program text (prog).

4.3 Warehouse Nodes
The distributed warehouse is represented by a set of warehouse
nodes, small warehouses that have no knowledge of each other and
communicate only with expression nodes that demand values for
〈variable, context〉 pairs.

Each warehouse node holds a table of slots that correspond
to the demands it receives. Each slot of this table is a tuple
< variable ; context ; entry > which represents what the
warehouse knows for a 〈variable, context〉 pair: if there is a com-
puted value i for it, entry is a term data(i); if, on the other hand,
its computation is still pending from another expression node en , it
is pending(en). These slots ensure that only one expression node
will compute a given 〈variable, context〉: the first such demand to
the warehouse creates a pending slot and notifies the asking expres-
sion node to continue with this new computation to reach a value;
in the meantime, demands from other expression nodes will block
on that pending slot.

4 2011/6/13

Warehouse
 node

Parent
node

Child
node

notify
demand

notify

continue

regVal

Figure 2. The messages that nodes can exchange.

sorts Slot CacheStatus Slots .

subsort Slot < Slots .

op data : Int -> CacheStatus [ctor] .

op pending : Oid -> CacheStatus [ctor] .

op <_;_;_> : String Stack CacheStatus -> Slot [ctor] .

When the expression node that continued to do the computation
informs the warehouse that it has a value, all the expression nodes
that had to block on that computation must unblock and be notified
of this value. To keep this information of blocked nodes that depend
on computations of other nodes, the warehouse has to keep another
table to record these dependencies. This is table pdep (“pending
dependencies”) and contains pairs pDep(en1 , en2), which state
that the result of expression node en1 should be communicated to
expression node en2 when the former finishes evaluation.

sorts PendingDep PendingDeps .

subsort PendingDep < PendingDeps .

op pDep : Oid Oid -> PendingDep .

Warehouse nodes are defined as instances of class WHouse:

class WHouse | slots : Slots, pend : PendingDeps .

4.4 Messages
A node en sends a message demand(wh, en, var , ctxt)2 to a
warehouse wh for the value of variable var in context ctxt . The
warehouse can either reply that it knows the value and it is i
(message notify(en,wh, i)), or tell the node to continue eval-
uation, as it does not know anything about the demand (message
continue(en,wh)). If the warehouse has a slot that the compu-
tation is pending somewhere else, it leaves the node waiting, until
it gets a value for it. Warehouse wh is updated when an expression
node en that was instructed to continue, eventually becomes a
value i and sends back a regVal(wh, en, i) message. Finally, a
child node sends a notify message, with its value, to its parent
when it finishes.

The messages exchanged between nodes are shown in Figure 2.

msg demand : Oid Oid String Stack -> Msg .

msg notify : Oid Oid Int -> Msg .

msg continue : Oid Oid -> Msg .

msg regVal : Oid Oid Int -> Msg .

4.5 Parallel Execution Rules
The rewrite rules defining parallel eduction are given below,
grouped according to their functions: warehouse interaction, pro-
cess internal state change, and spawn-merge parallelism.

2 By convention, the first argument of a message is the recipient, the second
is the sender, and any remaining ones are the message payload.

We use the following variables in our Maude model:

vars VAR OP : String . var CTXT : Stack .

var N : Nat . vars I I1 I2 : Int .

var SLOTS : Slots . var PDEPS : PendingDeps .

var DEFS : List{Def} . vars WPEND WS : Oids .

vars E0 E1 E2 : Expr . var EL : ExprList .

vars EN EN1 EN2 WH : Oid . var BR : Branch .

Interaction with the Warehouse. The following rewrite rules
define the communication between the expression nodes and the
warehouse nodes.

A running node whose expression is an NVIL variable asks
the warehouse for a value and blocks:

rl [DEMAND_ID] :

< EN : Node | status : running,

expr : < $ VAR ; CTXT >, whs : WS >

=>

< EN : Node | status : blocked >

demand(choose(VAR, CTXT, WS), EN, VAR, CTXT) .

Since a demand for a specific 〈var , ctxt〉 pair will always be sent
to the same warehouse, the warehouse choice (choose) can be
any function: its implementation does not affect correctness, only
performance.

If the warehouse has a value for the demand, it returns that
value:

rl [UPDATE_FROM_W] :

demand(WH, EN, VAR, CTXT)

< WH : WHouse | slots : < VAR ; CTXT ; data(I) > SLOTS >

=>

< WH : WHouse | >

notify(EN, WH, I) .

The notification message informs expression node EN that execu-
tion has finished and a value is ready to be used.

If a warehouse is asked for a value of an unknown pair, it will
create a pending slot for this new demand and send a message to
the asking node to continue evaluation:

crl [CREATE_PENDING_SLOT] :

demand(WH, EN, VAR, CTXT)

< WH : WHouse | slots : SLOTS >

=>

< WH : WHouse | slots : < VAR ; CTXT ; pending(EN) >

SLOTS >

continue(EN, WH)

if not VAR ; CTXT in SLOTS .

However, if the value demanded is being computed somewhere
else, the warehouse will find a pending slot for it. In this case, the
demanding expression node will be blocked until the warehouse
gets a computed value for its demand. To remember to unblock the
node in that case, the warehouse also records this dependency in its
pend list:

rl [CREATE_BLOCKED_SLOT] :

demand(WH, EN, VAR, CTXT)

< WH : WHouse | slots : < VAR ; CTXT ; pending(EN1) >

SLOTS,

pend : PDEPS >

=>

< WH : WHouse | pend : pDep(EN1, EN) PDEPS > .

A running node that eventually becomes a value will send a
message to the warehouses that wait for it (in set wp), in order to
register that value; it will also notify its parent:

5 2011/6/13

rl [NUM_FINISH] :

< EN \ BR : Node | status : running,

expr : < # I ; CTXT >,

wp : WPEND >

=>

regval-wh(WPEND, EN \ BR, I) notify(EN, EN \ BR, I) .

The regval-wh function creates a regVal message to each ware-
house that had to wait for the node’s computation. The expression
node is then deleted (in a real implementation, the process exits).

A blocked expression node may receive two different messages
from the warehouse: either to continue evaluation, or to terminate
with a value. A continue message from a warehouse lets the node
continue evaluating a variable by looking it up in the program:

rl [CONTINUE] :

continue(EN, WH)

< EN : Node | status : blocked, wp : WPEND,

expr : < $ VAR ; CTXT >, prog : DEFS >

=>

< EN : Node | status : running,

expr : < lookup(VAR, DEFS) ; CTXT >,

wp : (WH WPEND) > .

The node must add WH to its wp list (“warehouse-pending”), to
remember to notify it when the node becomes a value.

A blocked node that gets a notification from the warehouse, for
the value it has been waiting for, becomes that value (the empty
context snil is used as an optimization):

rl [TERMINATE_WITH_VALUE] :

notify(EN, WH, I)

< EN : Node | status : blocked,

expr : < $ VAR ; CTXT > >

=>

< EN : Node | status : running,

expr : < # I ; snil > > .

Finally, a warehouse may receive a message for value registra-
tion and must update the pending slots for that node (the updWH
operation):

rl [UPD_PENDING] :

regVal(WH, EN, I)

< WH : WHouse | slots : SLOTS, pend : PDEPS >

=>

< WH : WHouse | slots : updWH(EN, I, SLOTS),

pend : delete-waiting(PDEPS, EN) >

notify-waiting(PDEPS, WH, EN, I) .

PDEPS contains information about other nodes that EN has kept
waiting, and is then used by notify-waiting to send them
notifications that they should unblock and receive value I. The
delete-waiting operation updates the warehouse to forget about
these nodes.

Internal Process State. The intensional operators call and actu-
als have their standard push-pop semantics. No messages are sent
or received, only the internal state of the process changes. The ::
operator represents a given stack as a “head” element and a “tail”
stack and nthExpr(EL, N) chooses the N-th expression from the
expression list EL:

rl [CALL] :

< EN : Node | status : running,

expr : < call(N, E0) ; CTXT > >

=>

< EN : Node | expr : < E0 ; (N :: CTXT) > > .

rl [ACTUALS] :

< EN : Node | status : running,

expr : < actuals(EL) ; (N :: CTXT) > >

=>

< EN : Node | expr : < nthExpr(EL, N) ; CTXT > > .

Spawn/Merge Operations. A running built-in operator node
spawns new running nodes for its subexpressions and blocks. For
instance, the rule for the plus operator is as follows (the rules for
the other strict operators are similar):

rl [SPAWN_PLUS] :

< EN : Node | status : running,

expr : < cOp("+", E1 : E2) ; CTXT >,

whs : WS, prog : DEFS >

=>

< EN : Node | status : blocked,

expr : < cOp("+", E1 : E2) ; CTXT > >

< (EN \ left) : Node | status : running, prog : DEFS,

expr : < E1 ; CTXT >,

wp : none, whs : WS >

< (EN \ right) : Node | status : running, prog : DEFS,

expr : < E2 ; CTXT >,

wp : none, whs : WS > .

If all children of a blocked built-in operation node have replied,
the node can continue. For instance, for the addition operator, two
messages must exist for the parent node EN:

rl [MERGE_PLUS] :

notify(EN, (EN \ left), I1)

notify(EN, (EN \ right), I2)

< EN : Node | status : blocked,

expr : < cOp("+", E1 : E2) ; CTXT > >

=>

< EN : Node | status : running,

expr : < # (I1 + I2) ; snil > > .

5. Formal Analysis
This section explains how we have used Maude to automatically
analyze all possible behaviors of our model of the parallel virtual
machine for given programs. In particular, we are interested in the
following properties:

1. Parallel evaluation should always produce a unique and correct
result, if any.

2. No deadlocks should occur during program execution.

3. Finishing with the correct value is not enough: our warehouse
nodes must also be in a consistent state, without any pending
slots or pending dependencies. Such problems may not affect
correctness but lead to space leaks and thus should never occur.

We check these properties for the FOFL program in Section 2.1
(the fib(3) function), whose NVIL counterpart is:

result = call0(fib)
fib = if x < 2 then 1 else call1(fib) + call2(fib)
x = actuals(3, x− 1, x− 2)

We can check all three properties by searching for all reachable
states that cannot be further rewritten (notice that any state matches
the variable C of sort Configuration):

Maude> (search init =>! C:Configuration .)

Solution 1

C:Configuration -->

< whouse(0) : WHouse | pend : none, slots :

< "fib" ; 1 :: 0 :: snil ; data(2) >

6 2011/6/13

< "fib" ; 2 :: 0 :: snil ; data(1) >

< "x" ; 1 :: 0 :: snil ; data(2) >

< "x" ; 2 :: 0 :: snil ; data(1) >

< "result" ; snil ; data(3) > >

< whouse(1) : WHouse | pend : none, slots :

< "fib" ; 0 :: snil ; data(3) >

< "fib" ; 1 :: 1 :: 0 :: snil ; data(1) >

< "fib" ; 2 :: 1 :: 0 :: snil ; data(1) >

< "x" ; 0 :: snil ; data(3) >

< "x" ; 1 :: 1 :: 0 :: snil ; data(1) >

< "x" ; 2 :: 1 :: 0 :: snil ; data(0) > >

No more solutions.

Property 1 is satisfied, since only one final state is found; the unique
result is 8, as expected. No other states were reached, therefore no
deadlocked states are reachable. For the last property, we inspect
the values of the slots and pend attributes of the warehouses: no
pending slots or dependencies exist in the final state.

The table below shows the execution time for the search com-
mand for some programs and numbers of warehouses:

Program Number of warehouses
2 3 4 10

fib(3) 73 sec 76 sec 76 sec 88 sec
ack(1,3) 123 sec 147 sec 124 sec 131 sec
fact(6) 131 sec 133 sec 136 sec 152 sec

Since Maude’s model checker is fast, these execution times
expose the large number of different behaviors possible in our
model, even for seemingly simple example programs. The number
of warehouses used does not affect significantly the execution time
of our search.

It is also worth mentioning that even in a relatively simple
model like ours, model checking uncovered two errors in a previous
version of the model.

6. Parallel Implementation
We have used Erlang [1], a mature concurrent functional program-
ming language with an excellent parallel runtime system, to imple-
ment our parallel eduction model.

Since the Maude model is defined in a message passing style,
and since Erlang is based on message passing between processes,
implementation in Erlang turned out to be very easy. However, we
identified the following issues:

• The rewrite rules are divided into two groups: (a) rules that con-
sume a message and send another message (UPDATE FROM W,
CREATE PENDING SLOT, UPD PENDING) or change the inter-
nal state of a process (CREATE BLOCKED SLOT, CONTINUE,
TERMINATE WITH VALUE, MERGE-rules), and (b) rules that are
activated according to the current internal state of a proc-
cess (DEMAND ID, NUM FINISH, CALL, ACTUALS, SPAWN-rules).
Rules in the first group are easy to transfer directly as receive
clauses in Erlang; those in the second group contain program
logic and their implementation does not follow automatically
from the Maude model.
• An important implementation choice is how to choose the ware-

house to use every time a node reaches an identifier in a context;
this is the hard problem of cache locality. A simple function that
we used was to choose a warehouse according to the length of
the context, which resulted in arguments to the same function
call of the initial program residing in the same warehouse node.
• For efficient data storage and manipulation in the warehouses,

we used the Erlang ETS tables.

This made our prototype easy to implement, based on the rewrit-
ing logic model, and still, useful for real-world tests.3

7. Related Work
We discuss related work on semantics and implementations of par-
allel lazy functional languages, dataflow, and intensional program-
ming.

Semantics of Parallel Lazy Functional Languages. An opera-
tional semantics for parallel lazy evaluation is given by Baker-
Finch et al. [3] for the graph reduction-based GpH. A distributed
operational semantics for a parallel functional language is given by
Hidalgo-Herrero and Ortega-Mallén [14] for the explicit parallel
programming system Eden. It also expresses communication be-
tween parts of the program with message passing at a higher level,
but it is not fully lazy, permitting speculative evaluation.

Another view on the relationship between rewriting and lazy
functional languages implementations is explored by Plasmeijer
and v. Eekelen [23] for graph rewriting systems; however, they treat
explicit parallelism, whereas we describe implicit parallelism.

Our warehouse is a distributed associative memory with block-
on-read semantics; another one is tuple spaces [10], used e.g., by
Peterson et al. [20] for Haskell programming. Tuple spaces are
similar to our distributed warehouse, in the sense that both form
a middleware of the runtime system that controls parallelism. They
differ however in their communication model: ours is based on
message passing, while tuple spaces are a standalone, alternative
solution to communication between parts of the program.

Lazy Functional and Dataflow Languages. The distributed
warehouse that we have described shares some fundamental ideas
with traditional implementations of graph reduction [16, §2.4.1],
our blocking being similar to the “black hole” technique [18]
(which however relies on polling instead of message passing).

The GUM parallel implementation for Haskell is based on mes-
sage passing [29], using messages to move pieces of the program
graph between parts of the program, since it is based on graph re-
duction. By contrast, our parallel eduction moves identifiers, con-
texts and values between the expression and the warehouse nodes,
expressing a distributed dataflow view on the functional program.

Flanagan and Nikhil [7] describe the dataflow implementation
of pHluid. Its distributed caching model is very different from the
warehouse, as it is not based on eduction.

Intensional Languages. The TransLucid scientific intensional
language has a multithreaded implementation [24], the TVM
(TransLucid Virtual Machine). The TVM shares basic principles
with our virtual machine but depends on explicit parallelism and
has a centralized warehouse.

Warehouses are frequently used in implementations of educ-
tion. Operational semantics may be found in the work of Plaice
et al. [21, 22, 24] for centralized warehouses. A distributed model
for eduction is proposed in the work of Vassev and Paquet [32],
related to the implementation of the General Intensional Program-
ming System (GIPSY) [12]. In its latest implementation (which —
to the best of our knowledge — is not publicly available), GIPSY
supports a distributed warehouse (a collection of “demand migra-
tion systems”) implemented using Java technologies for distributed
software. However, GIPSY targets multi-machine distributed envi-
ronments, which is a quite different domain from what our work is
concerned with (the semantics and implementation of lazy func-
tional languages), with different performance and scalability re-
quirements.

3 Our Maude formalization and the Erlang prototype are both available at
http://www.softlab.ntua.gr/~gfour/lazy_par_vm.zip

7 2011/6/13

http://www.softlab.ntua.gr/~gfour/lazy_par_vm.zip

8. Concluding Remarks
We have given a formal semantics for a parallel model of a lazy
functional language using rewriting logic. The semantics is based
on the intensional transformation, which converts programs in the
original language to programs in NVIL, a zero-order dataflow lan-
guage with intensional operators. Parallelization makes use of dis-
tributed memoization, whose implementation is based on message
passing. We have built a prototype implementation of a parallel vir-
tual machine implementing this semantics in Erlang. We have also
formally analyzed our model in Maude.

NVIL was originally conceived to express tagged-token demand-
driven dataflow. With our rewriting semantics, execution of NVIL
programs is expressed using message passing. The performance
of our implementation can be much improved, as the computation
model described here exposes maximum parallelism that needs
fine-tuning.

Since the warehouse represents lazy activation records that may
be built during execution [5], our semantics can also model dis-
tributed lazy activation records, with each argument entry being an
Oz-like dataflow synchronization variable [28], or an I-structure as
in Id [2]. As the use of lazy activation records has been shown to
perform significantly better than memoized eduction for the imple-
mentation of NVIL [5], we plan to further investigate this possibil-
ity to implement efficiently distributed lazy activation records.

We also intend to use the same technique to implement an
extension of the original intensional transformation, which handles
a higher-order lazy functional programming language, with partial
application and user-defined datatypes [8]. We are also working on
abstraction techniques for verifying not only instances of our model
in Maude, but the general case.

Acknowledgment. G. Fourtounis was supported by the EEA FM
EL0086 NTUA Mobility and Scholarship Program.

References
[1] J. Armstrong. Programming Erlang: Software for a Concurrent World.

Pragmatic Bookshelf, 2007.

[2] Arvind and R. S. Nikhil. Executing a program on the MIT tagged-
token dataflow architecture. IEEE Trans. Comput., 39:300–318, 1990.
doi: 10.1109/12.48862.

[3] C. Baker-Finch, D. J. King, and P. Trinder. An operational semantics
for parallel lazy evaluation. SIGPLAN Not., 35:162–173, 2000. doi:
10.1145/357766.351256.

[4] G. Boudol. Some chemical abstract machines. In A Decade of Con-
currency Reflections and Perspectives, volume 803 of LNCS. Springer,
1994.

[5] A. Charalambidis, A. Grivas, N. S. Papaspyrou, and P. Rondogiannis.
Efficient intensional implementation for lazy functional languages.
Mathematics in Computer Science, 2(1):123–141, 2008. doi: 10.
1007/s11786-008-0047-5.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. L. Talcott, editors. All About Maude, volume 4350 of LNCS,
2007. Springer.

[7] C. Flanagan and R. S. Nikhil. pHluid: The Design of a Parallel Func-
tional Language Implementation on Workstations. In Proc. ICFP’96.
ACM, 1996.

[8] G. Fourtounis, N. Papaspyrou, and P. Rondogiannis. The Intensional
Transformation for Functional Languages with User-Defined Data
Types. In Proc. PLS8, 2011. (to appear).

[9] F. Gava and F. Loulergue. Verifying Functional Bulk Synchronous
Parallel Programs Using the Coq System. TPHOLS03 Emerging
Trends, (2003-02), 2003.

[10] D. Gelernter. Generative communication in Linda. ACM Trans.
Program. Lang. Syst., 7:80–112, 1985. doi: 10.1145/2363.2433.

[11] K. Hammond and G. Michelson, editors. Research Directions in
Parallel Functional Programming. Springer, 2000.

[12] B. Han, S. A. Mokhov, and J. Paquet. Advances in the Design and
Implementation of a Multi-tier Architecture in the GIPSY Environ-
ment with Java. In Proc. SERA’10. IEEE, 2010. doi: 10.1109/SERA.
2010.40.

[13] T. Harris and S. Singh. Feedback directed implicit parallelism. SIG-
PLAN Not., 42:251–264, 2007. doi: 10.1145/1291220.1291192.

[14] M. Hidalgo-Herrero and Y. Ortega-Mallén. A Distributed Operational
Semantics for a Parallel Functional Language. In Proc. SFP’00.
Intellect Books, 2000.

[15] S. P. Jones, R. Leshchinskiy, G. Keller, and M. M. T. Chakravarty. Har-
nessing the multicores: Nested data parallelism in Haskell. In Proc.
FSTTCS’08, volume 2 of Leibniz International Proceedings in Infor-
matics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2008. doi: 10.4230/LIPIcs.FSTTCS.2008.1769.

[16] H.-W. Loidl. Granularity in Large-Scale Parallel Functional Pro-
gramming. PhD thesis, Department of Computing Science, University
of Glasgow, 1998.

[17] R. Loogen, Y. Ortega-Mallén, and R. Peña Marı́. Parallel functional
programming in Eden. J. Funct. Program., 15:431–475, 2005. doi:
10.1017/S0956796805005526.

[18] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for
multicore Haskell. In Proc. ICFP’09. ACM, 2009. doi: 10.1145/
1596550.1596563.

[19] J. Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theor. Comput. Sci., 96:73–155, 1992. doi: 10.1016/
0304-3975(92)90182-F.

[20] J. Peterson, V. Trifonov, and A. Serjantov. Parallel functional reactive
programming. In PADL’00, volume 1753 of LNCS. Springer, 2000.

[21] J. Plaice. Multidimensional Lucid: Design, Semantics and Implemen-
tation. In Proc. DCW’00, volume 1830 of LNCS. Springer, 2000.

[22] J. Plaice, B. Mancilla, G. Ditu, and W. W. Wadge. Sequential demand-
driven evaluation of Eager TransLucid. COMPSAC’08, 2008. doi:
10.1109/COMPSAC.2008.191.

[23] R. Plasmeijer and M. v. Eekelen. Functional Programming and Par-
allel Graph Rewriting. Addison-Wesley, 1993.

[24] T. Rahilly and J. Plaice. A multithreaded implementation for TransLu-
cid. In COMPSAC. IEEE, 2008.

[25] J. C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Reprinted from the proceedings of the 25th ACM
National Conference. ACM, 1972.

[26] P. Rondogiannis and W. W. Wadge. First-order functional languages
and intensional logic. J. Funct. Program., 7:73–101, 1997. doi:
10.1017/S0956796897002633.

[27] P. Rondogiannis and W. W. Wadge. Higher-order functional languages
and intensional logic. J. Funct. Program., 9(5):527–564, 1999. doi:
10.1017/S0956796899003445.

[28] P. v. Roy and S. Haridi. Concepts, Techniques, and Models of Com-
puter Programming. MIT Press, 2004.

[29] P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and
S. L. Peyton Jones. GUM: a portable implementation of Haskell. In
Proc. PLDI’96, 1996.

[30] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones.
Algorithm + Strategy = Parallelism. J. of Funct. Program., 8(1):23–
60, 1998. doi: 10.1017/S0956796897002967.

[31] P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and distributed
Haskells. J. Funct. Program., 12:469–510, 2002. doi: 10.1017/
S0956796802004343.

[32] E. Vassev and J. Paquet. A general architecture for demand migra-
tion in a demand-driven execution engine in a heterogeneous and dis-
tributed environment. In Proc. CNSR’05, 2005. doi: 10.1109/CNSR.
2005.9.

8 2011/6/13

http://dx.doi.org/10.1109/12.48862
http://dx.doi.org/10.1145/357766.351256
http://dx.doi.org/10.1007/s11786-008-0047-5
http://dx.doi.org/10.1007/s11786-008-0047-5
http://dx.doi.org/10.1145/2363.2433
http://dx.doi.org/10.1109/SERA.2010.40
http://dx.doi.org/10.1109/SERA.2010.40
http://dx.doi.org/10.1145/1291220.1291192
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1769
http://dx.doi.org/10.1017/S0956796805005526
http://dx.doi.org/10.1145/1596550.1596563
http://dx.doi.org/10.1145/1596550.1596563
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1109/COMPSAC.2008.191
http://dx.doi.org/10.1017/S0956796897002633
http://dx.doi.org/10.1017/S0956796899003445
http://dx.doi.org/10.1017/S0956796897002967
http://dx.doi.org/10.1017/S0956796802004343
http://dx.doi.org/10.1017/S0956796802004343
http://dx.doi.org/10.1109/CNSR.2005.9
http://dx.doi.org/10.1109/CNSR.2005.9

	Introduction
	Preliminaries
	The Language FOFL
	The Language NVIL and the Intensional Transformation
	Rewriting Logic and Maude

	Parallelizing Eduction
	NVIL Parallelism
	The Warehouse
	The Message Passing Model

	Formalization in Rewriting Logic
	Representing NVIL Programs
	Expression Nodes
	Warehouse Nodes
	Messages
	Parallel Execution Rules

	Formal Analysis
	Parallel Implementation
	Related Work
	Concluding Remarks

